Solving approximate cloaking problems using finite element methods
نویسندگان
چکیده
منابع مشابه
Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods
In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues an...
متن کاملMethods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver
We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two ph...
متن کاملAdaptive Finite Element Methods for Multiphysics Problems Adaptive Finite Element Methods for Multiphysics Problems
In this thesis we develop and evaluate the performance of adaptive finite element methods for multiphysics problems. In particular, we propose a methodology for deriving computable error estimates when solving unidirectionally coupled multiphysics problems using segregated finite element solvers. The error estimates are of a posteriori type and are derived using the standard framework of dual w...
متن کاملStress based finite element methods for solving contact problems: Comparisons between various solution methods
Article history: Received 21 January 2007 Accepted 28 November 2008 Available online 12 January 2009
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANZIAM Journal
سال: 2017
ISSN: 1445-8810
DOI: 10.21914/anziamj.v58i0.11729